If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n+n^2=342
We move all terms to the left:
n+n^2-(342)=0
a = 1; b = 1; c = -342;
Δ = b2-4ac
Δ = 12-4·1·(-342)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-37}{2*1}=\frac{-38}{2} =-19 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+37}{2*1}=\frac{36}{2} =18 $
| 2x+8x-2=10 | | -6x+4x=7-9-18 | | 1/4(8x+32)-7=-1/3(12x-24) | | H(t)=4t^2+3t+1/t | | -3(4x-8)=2(3+2x) | | (30+x)(440-10x)=0 | | .20(275-10e)=55 | | x+3+(5/x)=0 | | (3x+7)+10=2 | | 9b+1+7b=3b+6 | | 15-|2-3k|=2 | | 14y-10=2(7y-5) | | m/3.7=8 | | 5a-6-2a=125a | | 3x-7/3=6x-5 | | 2t=-10+t | | 2x+40=6x+20 | | 2x+21+11=x+24 | | 7(y-2)=28 | | (x-3)^2=49 | | 5x/8+3/8=3x | | 1−∣∣13q−5∣∣=−6 | | 3x+9=9x-7 | | 1−∣∣13q−5∣∣=−61−|13q−5|=−6 | | 4y^2-6=y-24y^2 | | -6(x+6)+9=-27 | | 5z2–2z+5=0 | | 41x=2+5 | | x-(1-3x)=-(4x+3) | | X+10+4x+2=9x-6 | | -m/3=(-4) | | N+16=o |